• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Investigation of the Static Bending Response of FGM Sandwich Plates

    View/Open
    JACM_Volume 10_Issue 1_Pages 26-37.pdf (1.401Mb)
    Date
    2024
    Author
    Hadji, Lazreg
    Plevris, Vagelis
    Papazafeiropoulos, George
    Metadata
    Show full item record
    Abstract
    In the present work, a displacement-based high-order shear deformation theory is introduced for the static response of functionally graded plates. The present theory is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. By dividing the transverse displacement into the bending and shear parts and making further assumptions, the number of unknowns and equations of motion of the present theory is reduced a and hence makes them simple to use. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The equilibrium equations of a functionally graded plate are given based on the higher order shear deformation theory. The numerical results presented in the paper are demonstrated by comparing the results with solutions derived from other higher-order models found in the literature and the present numerical results of Finite Element Analysis (FEA). In the numerical results, the effects of the grading materials, lay-up scheme and aspect ratio on the normal stress, shear stress and static deflections of the functionally graded sandwich plates are presented and discussed. It can be concluded that the proposed theory is accurate, elegant and simple in solving the problem of the bending behavior of functionally graded plates.
    DOI/handle
    http://dx.doi.org/10.22055/jacm.2023.44278.4194
    http://hdl.handle.net/10576/59680
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video