• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Data-Driven Self-Optimization Solution for Inter-Frequency Mobility Parameters in Emerging Networks

    View/Open
    A_Data-Driven_Self-Optimization_Solution_for_Inter-Frequency_Mobility_Parameters_in_Emerging_Networks.pdf (5.671Mb)
    Date
    2022
    Author
    Umar Bin Farooq, Muhammad
    Manalastas, Marvin
    Raza, Waseem
    Zaidi, Syed Muhammad Asad
    Rizwan, Ali
    Abu-Dayya, Adnan
    Imran, Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Densification and multi-band operation means inter-frequency handovers can become a bottleneck for mobile user experience in emerging cellular networks. The challenge is aggravated by the fact that there does not exist a method to optimize key inter-frequency handover parameters namely A5 time-to-trigger, A5-threshold1 and A5-threshold2. This paper presents a first study to analyze and optimize the three A5 parameters for jointly maximizing three key performance indicators that reflect mobile user experience: handover success rate (HOSR), reference signal received power (RSRP), and signal-to-interference-plus-noise-ratio (SINR). As analytical modeling cannot capture the system-level complexity, we exploit a data-driven approach. To minimize the training data generation time, we exploit shapley additive explanations (SHAP) sensitivity analysis. The insights from SHAP analysis allow the selective collection of the training data thereby enabling the easier implementation of the proposed solution in a real network. We show that joint RSRP, SINR and HOSR optimization problem is non-convex and solve it using genetic algorithm (GA). We then propose an intelligent mutation scheme for GA, which makes the solution 5x times faster than the legacy GA and 21x faster than the brute force search. This paper thus presents first solution to implement computationally efficient closed-loop self-optimization of inter-frequency mobility parameters.
    DOI/handle
    http://dx.doi.org/10.1109/TCCN.2022.3152510
    http://hdl.handle.net/10576/60220
    Collections
    • Electrical Engineering [‎2821‎ items ]
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video