• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine Learning Aided Holistic Handover Optimization for Emerging Networks

    View/Open
    Machine_Learning_Aided_Holistic_Handover_Optimization_for_Emerging_Networks.pdf (1.858Mb)
    Date
    2022
    Author
    Farooq, Muhammad Umar Bin
    Manalastas, Marvin
    Zaidi, Syed Muhammad Asad
    Abu-Dayya, Adnan
    Imran, Ali
    Metadata
    Show full item record
    Abstract
    In the wake of network densification and multi-band operation in emerging cellular networks, mobility and handover management is becoming a major bottleneck. The problem is further aggravated by the fact that holistic mobility management solutions for different types of handovers, namely inter-frequency and intra-frequency handovers, remain scarce. This paper presents a first mobility management solution that concurrently optimizes inter-frequency related A5 parameters and intra-frequency related A3 parameters. We analyze and optimize five parameters namely A5-time to trigger (TTT), A5-threshold1, A5-threshold2, A3-TTT, and A3-offset to jointly maximize three critical key performance indicators (KPIs): edge user reference signal received power (RSRP), handover success rate (HOSR) and load between frequency bands. In the absence of tractable analytical models due to system level complexity, we leverage machine learning to quantify the KPIs as a function of the mobility parameters. An XGBoost based model has the best performance for edge RSRP and HOSR while random forest outperforms others for load prediction. An analysis of the mobility parameters provides several insights: 1) there exists a strong coupling between A3 and A5 parameters; 2) an optimal set of parameters exists for each KPI; and 3) the optimal parameters vary for different KPIs. We also perform a SHAP based sensitivity to help resolve the parametric conflict between the KPIs. Finally, we formulate a maximization problem, show it is non-convex, and solve it utilizing simulated annealing (SA). Results indicate that ML-based SA-aided solution is more than 14x faster than the brute force approach with a slight loss in optimality.
    DOI/handle
    http://dx.doi.org/10.1109/ICC45855.2022.9839024
    http://hdl.handle.net/10576/60225
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video