• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Op2Vec: An Opcode Embedding Technique and Dataset Design for End-to-End Detection of Android Malware

    Thumbnail
    View/Open
    Security and Communication Networks - 2022 - Khan - Op2Vec An Opcode Embedding Technique and Dataset Design for End‐to‐End (2).pdf (562.7Kb)
    Date
    2022-01-01
    Author
    Khan, Kaleem Nawaz
    Ullah, Najeeb
    Ali, Sikandar
    Khan, Muhammad Salman
    Nauman, Mohammad
    Ghani, Anwar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Android is one of the leading operating systems for smartphones in terms of market share and usage. Unfortunately, it is also an appealing target for attackers to compromise its security through malicious applications. To tackle this issue, domain experts and researchers are trying different techniques to stop such attacks. All the attempts of securing the Android platform are somewhat successful. However, existing detection techniques have severe shortcomings, including the cumbersome process of feature engineering. Designing representative features require expert domain knowledge. There is a need for minimizing human experts' intervention by circumventing handcrafted feature engineering. Deep learning could be exploited by extracting deep features automatically. Previous work has shown that operational codes (opcodes) of executables provide key information to be used with deep learning models for the detection process of malicious applications. The only challenge is to feed opcodes information to deep learning models. Existing techniques use one-hot encoding to tackle the challenge. However, the one-hot encoding scheme has severe limitations. In this paper, we introduce (1) a novel technique for opcodes embedding, which we name Op2Vec, and (2) based on the learned Op2Vec, we have developed a dataset for end-to-end detection of Android malware. Introducing the end-to-end Android malware detection technique avoids expert-intensive handcrafted feature extraction and ensures automation. Some of the recent deep learning-based techniques showed significantly improved results when tested with the proposed approach and achieved an average detection accuracy of 97.47%, precision of 0.976, and F1 score of 0.979.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131158219&origin=inward
    DOI/handle
    http://dx.doi.org/10.1155/2022/3710968
    http://hdl.handle.net/10576/61812
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video