• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Realization of superconducting-magnetic energy storage supported DSTATCOM using deep Bayesian Active Learning

    Thumbnail
    Date
    2024-01-01
    Author
    Mangaraj, M.
    Nizami, T. K.
    Babu, B. Chitti
    Muyeen, S. M.
    Singh, Satyavir
    Metadata
    Show full item record
    Abstract
    The Distributed Static Compensator (DSTATCOM) is being recognized as a shunt compensator in the power distribution networks (PDN). In this research study, the superconducting magnetic energy storage (SMES) is deployed with DSTATCOM to augment the assortment compensation capability with reduced DC link voltage. The proposed SMES is characterized by a DC-DC converter with different circuit elements like one inductor, two diodes and two insulated gate bipolar transistors. The Deep Bayesian Active Learning algorithm is suggested to operate SMES supported DSTATCOM for the elimination of harmonics under different loading scenarios. Apart from this, the other benefits like improvement in power factor, load balancing, potential regulation are attained. The simulation studies obtained from the proposed method demonstrates the correctness of the design and analysis compared to the DSTATCOM. To show the power quality effectiveness, balanced and unbalanced loading are considered for the shunt compensation as per the guidelines imposed by IEEE-519-2017 and IEC- 61000-1 grid code.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85198544381&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00202-024-02560-z
    http://hdl.handle.net/10576/62076
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video