A Remark On Proper Left H* — Algebras

QSpace/Manakin Repository

A Remark On Proper Left H* — Algebras

Show full item record


Title: A Remark On Proper Left H* — Algebras
Author: Talabani, M. M [مريوان مصطفى الطلباني]
Abstract: W. Ambrose gave the theory of proper H* -algebras and M. Smiley in (2) gave an example of a left H* -algebra which is not a two-sided H* -algebra. Then he modified some of the arguments of Ambrose which yield the structure of proper right H*-algebras. In fact he proved that a proper right H*-algebra is merely a proper H*-algebra in which the norm has been changed to a certain equivalent norm in each of the simple components. In this short paper, we define proper left H*-algebras and give two lemmas for these classes. Then we prove the main result that every proper left H*-algebra is a proper H*-algebra. Thus, in this paper, we prove that the following are equivalent: (i) Proper left H*-algebras. (ii) Proper right H*-algebras. (iii) Proper H*-algebras.في هذا إلبحث القصير ، سنبرهن على أن الحالات الثلاثة التالية متكافئ!ة . ا -جبر -+لما اليسار التاس . 2 -جبر -ه لمه اليهين التاسا . 3 -جبر -+لما التام .
URI: http://hdl.handle.net/10576/9879
Date: 1984

Files in this item

Files Size Format View
abstract.pdf 1.842Kb PDF View/Open
abstract.doc 20Kb Microsoft Word View/Open
abstract_ar.doc 20Kb Microsoft Word View/Open
07-84-4-0004-fulltext.pdf 77.60Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record

Search QSpace


Advanced Search

Browse

My Account