• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective implementation of time–frequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2013-12
    Author
    Khlif, M
    Colditz, P
    Boashash, B
    Metadata
    Show full item record
    Abstract
    Neonatal EEG seizures often manifest as nonstationary and multicomponent signals, necessitating analysis in the time–frequency (TF) domain. This paper presents a novel neonatal seizure detector based on effective implementation of the TF matched filter. In the detection process, the TF signatures of EEG seizure are extracted to construct the TF templates used by the matched filter. Matching pursuit (MP) decomposition and narrowband filtering are proposed for the reduction of artifacts prior to seizure detection. Geometrical correlation is used to consolidate the multichannel detections and to reduce the number of false detections due to remnant artifacts. A data-dependent threshold is defined for the classification of EEG. Using 30 newborn EEG records with seizures, the classification process yielded an overall detection accuracy of 92.4% with good detection rate (GDR) of 84.8% and false detection rate of 0.36 FD/h. Better detection performance (accuracy >95%) was recorded for relatively long EEG records with short seizure events.
    DOI/handle
    http://dx.doi.org/10.1016/j.medengphy.2013.07.005
    http://hdl.handle.net/10576/10960
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video