A methodology for time-frequency image processing applied to the classification of nonstationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals
Date
2003Metadata
Show full item recordAbstract
This article presents a general methodology for processing non-stationary signals for the purpose of classification and localization. The methodology combines methods adapted from three complementary areas: time-frequency signal analysis, multichannel signal analysis and image processing. The latter three combine in a new methodology referred to as multichannel time-frequency image processing which is applied to the problem of classifying electroencephalogram (EEG) abnormalities in both adults and newborns. A combination of signal related features and image related features are used by merging key instantaneous frequency descriptors which characterize the signal non-stationarities. The results obtained show that, firstly, the features based on time-frequency image processing techniques such as image segmentation, improve the performance of EEG abnormalities detection in the classification systems based on multi-SVM and neural network classifiers. Secondly, these discriminating features are able to better detect the correlation between newborn EEG signals in a multichannel-based newborn EEG seizure detection for the purpose of localizing EEG abnormalities on the scalp.
Collections
- Electrical Engineering [2649 items ]
Related items
Showing items related by title, author, creator and subject.
-
Time-frequency signal and image processing of non-stationary signals with application to the classification of newborn EEG abnormalities
Boashash, Boualem; Boubchir, Larbi; Azemi, Ghasem ( IEEE , 2011 , Conference Paper)This paper presents an introduction to time-frequency (T-F) methods in signal processing, and a novel approach for EEG abnormalities detection and classification based on a combination of signal related features and image ... -
Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy
Sucic, Victor; Saulig, Nicoletta; Boashash, Boualem ( Springer , 2011 , Article)The time-frequency Rényi entropy provides a measure of complexity of a nonstationary multicomponent signal in the time-frequency plane. When the complexity of a signal corresponds to the number of its components, then this ... -
Instantaneous frequency based newborn EEG seizure characterisation
Mesbah M.; O'Toole J.M.; Colditz P.B.; Boashash B. (2012 , Article)The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures ...