• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Ontology based Text-to-Picture Multimedia m-Learning System

    Thumbnail
    View/Open
    Dissertation-Doctorate of Science.pdf (3.473Mb)
    Date
    2018-01
    Author
    Karkar, Abdel Ghani
    Metadata
    Show full item record
    Abstract
    Multimedia Text-to-Picture is the process of building mental representation from words associated with images. From the research aspect, multimedia instructional message items are illustrations of material using words and pictures that are designed to promote user realization. Illustrations can be presented in a static form such as images, symbols, icons, figures, tables, charts, and maps; or in a dynamic form such as animation, or video clips. Due to the intuitiveness and vividness of visual illustration, many text to picture systems have been proposed in the literature like, Word2Image, Chat with Illustrations, and many others as discussed in the literature review chapter of this thesis. However, we found that some common limitations exist in these systems, especially for the presented images. In fact, the retrieved materials are not fully suitable for educational purposes. Many of them are not context-based and didn’t take into consideration the need of learners (i.e., general purpose images). Manually finding the required pedagogic images to illustrate educational content for learners is inefficient and requires huge efforts, which is a very challenging task. In addition, the available learning systems that mine text based on keywords or sentences selection provide incomplete pedagogic illustrations. This is because words and their semantically related terms are not considered during the process of finding illustrations. In this dissertation, we propose new approaches based on the semantic conceptual graph and semantically distributed weights to mine optimal illustrations that match Arabic text in the children’s story domain. We combine these approaches with best keywords and sentences selection algorithms, in order to improve the retrieval of images matching the Arabic text. Our findings show significant improvements in modelling Arabic vocabulary with the most meaningful images and best coverage of the domain in discourse. We also develop a mobile Text-to-Picture System that has two novel features, which are (1) a conceptual graph visualization (CGV) and (2) a visual illustrative assessment. The CGV shows the relationship between terms associated with a picture. It enables the learners to discover the semantic links between Arabic terms and improve their understanding of Arabic vocabulary. The assessment component allows the instructor to automatically follow up the performance of learners. Our experiments demonstrate the efficiency of our multimedia text-to-picture system in enhancing the learners’ knowledge and boost their comprehension of Arabic vocabulary.
    DOI/handle
    http://hdl.handle.net/10576/11229
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video