• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative computational approach toward pharmacological chaperones (NN-DNJ and ambroxol) on N370S and L444P mutations causing Gaucher's disease.

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-01-01
    Author
    Thirumal Kumar, D
    Iyer, Sharada
    Christy, J Priyadharshini
    Siva, R
    Tayubi, Iftikhar Aslam
    George Priya Doss, C
    Zayed, Hatem
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Gaucher's disease (GD) is the most commonly known lysosomal disorder that occurs due to mutations in the β-glucocerebrosidase (GBA) protein. Our previous findings (Thirumal Kumar, Eldous, Mahgoub, George Priya Doss, Zayed, 2018) and other reports concluded that the mutations N370S and L444P are the most significant mutations that could cause disruptions in protein stability and structure. These disruptions lead to protein misfolding and result in a diseased condition. Enzyme Replacement Therapy (ERT) and Pharmacological chaperone therapy (PCT) are currently used to treat GD caused by mutations in the GBA protein. The extreme disparity in cost between ERT and chaperone therapy, shifted the attention toward chaperone therapy. The most common chaperones in the market and trial phases to treat GD are Isofagomine, Miglustat, Eliglustat, NN-DNJ, and Ambroxol. In the era of personalized medicine, it is often necessary to understand the drug likeliness of each chaperone. In this context, the present study utilized molecular docking analysis to understand the interaction behavior of the chaperone toward the native and the two mutants N370S and L444P. The molecular dynamics simulation analyses performed on chaperones (NN-DNJ and Ambroxol) interaction showed that the chaperone NN-DNJ possesses better affinity toward the protein with N370S mutation whereas chaperone Ambroxol showed better activity against both the significant mutations (N370S and L444P). This study is expected to serve as a platform for drug repurposing.
    DOI/handle
    http://dx.doi.org/10.1016/bs.apcsb.2018.10.002
    http://hdl.handle.net/10576/11284
    Collections
    • Biomedical Sciences [‎277 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video