• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time automated image segmentation technique for cerebral aneurysm on reconfigurable system-on-chip

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2018-07-01
    المؤلف
    Zhai, X.
    Zhai, Xiaojun
    Eslami, Mohammad
    Hussein, Ealaf Sayed
    Filali, Maroua Salem
    Shalaby, Salma Tarek
    Amira, Abbes
    Bensaali, Faycal
    Dakua, Sarada
    Abinahed, Julien
    Al-Ansari, Abdulla
    Ahmed, Ayman Z.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    © 2018 Elsevier B.V. Cerebral aneurysm is a weakness in a blood vessel that may enlarge and bleed into the surrounding area, which is a life-threatening condition. Therefore, early and accurate diagnosis of aneurysm is highly required to help doctors to decide the right treatment. This work aims to implement a real-time automated segmentation technique for cerebral aneurysm on the Zynq system-on-chip (SoC), and virtualize the results on a 3D plane, utilizing virtual reality (VR) facilities, such as Oculus Rift, to create an interactive environment for training purposes. The segmentation algorithm is designed based on hard thresholding and Haar wavelet transformation. The system is tested on six subjects, for each consists 512 × 512 DICOM slices, of 16 bits 3D rotational angiography. The quantitative and subjective evaluation show that the segmented masks and 3D generated volumes have admitted results. In addition, the hardware implement results show that the proposed implementation is capable to process an image using Zynq SoC in an average time of 5.2 ms.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046644207&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.jocs.2018.05.002
    http://hdl.handle.net/10576/11814
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video