• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing thermal and mechanical response of aluminum using nanolength scale TiC ceramic reinforcement

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Reddy M.P.
    Himyan M.A.
    Ubaid F.
    Shakoor R.A.
    Vyasaraj M.
    Gururaj P.
    Yusuf M.
    Mohamed A.M.A.
    Gupta M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    the present work, nano-sized titanium carbide (0.5, 1.0 and 1.5 vol%) reinforced aluminum (Al) metal matrix composites were synthesized by powder metallurgy incorporating microwave sintering and hot extrusion. Microstructural, mechanical and thermal properties of hot extruded unreinforced aluminum and titanium carbide (TiC) reinforced aluminum composites are presented in this paper. X-ray diffraction (XRD) patterns and scanning electron microcopy (SEM) images show the homogeneous distribution of TiC nanoparticles in the Al matrix. The tensile and compressive strengths of Al composites increased with the increase in TiC content, while the ductility decreased. The CTE of Al composite decreased with the progressive addition of hard TiC nanoparticles. Overall, hot extruded Al 1.5 vol% TiC nanocomposite exhibited the best combination of tensile, compressive, hardness and Young's modulus of 186 ± 3 MPa, 416 ± 4 MPa, 9.75 ± 0.5 GPa and ~103 GPa, respectively. High tensile strength and good thermal stability exhibited by Al-TiC nanocomposites developed in this study show the potential for a variety of weight-critical engineering applications.
    DOI/handle
    http://dx.doi.org/10.1016/j.ceramint.2018.02.135
    http://hdl.handle.net/10576/11967
    Collections
    • Center for Advanced Materials Research [‎1551‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video