• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards a Practical Crowdsensing System for Road Surface Conditions Monitoring

    Thumbnail
    التاريخ
    2018
    المؤلف
    El-WakeelA.S.
    LiJ.
    NoureldinA.
    HassaneinH.S.
    ZorbaN.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The Internet of Things (IoT) infrastructure, systems, and applications demonstrate potential in serving smart city development. Crowdsensing approaches for road surface conditions monitoring can benefit smart city road information services. Deteriorated roads induce vehicle damage, traffic congestion, and driver discomfort which influence traffic management. In this paper, we propose a framework for monitoring road surface anomalies. We analyze the common road surface types and irregularities as well as their impact on vehicle motion. In addition to the traditional use of sensors available in smart devices, we utilize the vehicle motion sensors (accelerometers and gyroscopes) presently available in most land vehicles. Various land vehicles were used in this paper, spanning different sizes, and year model for extensive road experiments. These trajectories were used to collect and build multiple labeled data sets that were used in the system structure. In order to enhance the performance of the sensor measurements, wavelet packet de-noising is used in this paper to enable efficient classification of road surface anomalies. We adopt statistical, time domain, and frequency domain features to distinguish different road anomalies. The descriptive data sets collected in this paper are used to build, train, and test a system classifier through machine learning techniques to detect and categorize multiple road anomalies with different severity levels. Furthermore, we analyze and assess the capabilities of the smart devices and the other vehicle motion sensors to accurately geo-reference the road surface anomalies. Several road test experiments examine the benefits and assess the performance of the proposed architecture.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2018.2807408
    http://hdl.handle.net/10576/12051
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video