• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University QSpace
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Anti-corrosive and oil sensitive coatings based on epoxy/polyaniline/magnetite-clay composites through diazonium interfacial chemistry

    Thumbnail
    Date
    2018
    Author
    Jlassi K.
    Radwan A.B.
    Sadasivuni K.K.
    Mrlik M.
    Abdullah A.M.
    Chehimi M.M.
    Krupa I.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Epoxy polymer nanocomposites filled with magnetite (Fe3O4) clay (B), named (B-DPA-PANI@Fe3O4) have been prepared at different filler loading (0.1, 0.5, 1, 3, 5 wt. %). The surface modification of clay by polyaniline (PANI) is achieved in the presence of 4-diphenylamine diazonium salt (DPA). The effects of the nanofiller loading on Tensile, mechanical and dielectric properties were systematically studied. Improved properties was highlighted for all reinforced samples. The addition of only 3 wt. % of the filler enhanced the tensile strength of the composites by 256%, and the glass transition temperature Tg by 37%. The dielectric spectra over a broad frequency showed a robust interface between the hybrid (B-DPA-PANI@Fe3O4) fillers and epoxy matrix. The results showed most significant improvement in corrosion inhibition using electrochemical impedance spectroscopy (EIS) in 3.5 wt % NaCl, as well as a significant response in oil sensing test. High charge transfer resistance of 110 � 106 ?.cm2 using 3-wt % of filler was noted compared to 0.35 � 106 ?.cm2 for the pure epoxy. The results obtained herein will open new routes for the preparation of efficient anticorrosion sensor coatings. � 2018, The Author(s).

    DOI/handle
    http://dx.doi.org/10.1038/s41598-018-31508-0
    http://hdl.handle.net/10576/12200
    Collections
    • Center for Advanced Materials Research [‎430 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video