• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blind Source Separation Algorithms Using Hyperbolic and Givens Rotations for High-Order QAM Constellations

    Thumbnail
    Date
    2018
    Author
    Shah S.A.W.
    Abed-Meraim K.
    Al-Naffouri T.Y.
    Metadata
    Show full item record
    Abstract
    This paper addresses the problem of blind demixing of instantaneous mixtures in a multiple-input multiple-output communication system. The main objective is to present efficient blind source separation (BSS) algorithms dedicated to moderate or high-order quadratic-amplitude modulation (QAM) constellations. Four new iterative batch, BSS algorithms are presented dealing with the multimodulus (MM) and alphabet matched (AM) criteria. For the optimization of these cost functions, iterative methods of Givens and hyperbolic rotations are used. A prewhitening operation is also utilized to reduce the complexity of design problem. It is noticed that the designed algorithms using Givens rotations give satisfactory performance only for a large number of samples. However, for a small number of samples, the algorithms designed by combining both Givens and hyperbolic rotations compensate for the ill-whitening that occurs in this case and thus improves the performance. Two algorithms dealing with the MM criterion are presented for moderate-order QAM signals such as 16-QAM. The other two dealing with the AM criterion are presented for high-order QAM signals. These methods are finally compared with the state-of-the-art batch BSS algorithms in terms of signal-to-interference and noise ratio, symbol error rate, and convergence rate. Simulation results show that the proposed methods outperform the contemporary batch BSS algorithms.
    DOI/handle
    http://dx.doi.org/10.1109/TSP.2017.2777392
    http://hdl.handle.net/10576/12262
    Collections
    • Pharmacy Research [‎1399‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video