• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Reconfigurable Connected Health Platform Using ZYNQ System on Chip

    Thumbnail
    التاريخ
    2018
    المؤلف
    Abunahia D.G.
    Ismail T.A.
    Abou Al Ola H.R.
    Amira A.
    Ait Si Ali A.
    Bensaali F.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper presents a reconfigurable connected health platform for fall and cardiac disease detection to be used in smart home environments using Shimmer sensing device and ZYNQ System on Chip (SoC) platform. The system can also be deployed in ambulances to equip them with health monitoring technologies. The system is designed to be used by elderly, diabetics, muscular and neurological patients who are likely to fall, in addition to heart patients who are probable to get heart attacks causing falls. This project aims to provide users and their families with a sense of mental and physical security in their houses. It will also help them pass through the abstraction of money, since they will not need costly home care nursing services, and they will enjoy relief without having an observer, hence providing a significant socioeconomic impact. The system has three main features: (1) Sensing data gathered from the accelerometer and Electrocardiogram (ECG) electrodes embedded in the Shimmer sensing device; (2) Real time monitoring and alerting system; and (3) Medical logging consists of time, position, strength, and location of the fall. The real-time classification of the fall detection has been achieved with an accuracy of 90% using K-Nearest Neighbors (KNN) algorithm. Moreover, the KNN hardware implementation requires 48% of Look-Up Tables (LUTs) and 22% of Flip-Flops (FFs) available on the Zedboard while consuming 582 Mw. Springer International Publishing AG 2018.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-319-56991-8_62
    http://hdl.handle.net/10576/12791
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video