Show simple item record

AuthorSumathra M.
AuthorSadasivuni K.K.
AuthorSuresh Kumar S.
AuthorRajan M.
Available date2020-02-24T08:57:11Z
Publication Date2018
Publication NameACS Omega
ISSN24701343
URIhttp://dx.doi.org/10.1021/acsomega.8b02090
URIhttp://hdl.handle.net/10576/12971
AbstractPresently, tissue engineering approaches have been focused toward finding new potential scaffolds with osteoconductivity on bone-disease-affected cells. This work focused on the cisplatin (CDDP)-loaded graphene oxide (GO)/hydroxyapatite (HAP)/chitosan (CS) composite for enhancing the growth of osteoblast cells and prevent the development of osteosarcoma cells. The prepared composites were characterized for the confirmation of composite formation using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction techniques. A flowerlike morphology was observed for the GO/HAP/CS-3/CDDP composite. UV-vis spectroscopy was used to observe the controlled release of CDDP from the GO/HAP/CS-3/CDDP composite, and 67.34% of CDDP was released from the composite over a time period of 10 days. The GO/HAP/CS-3/CDDP nanocomposites showed higher viability in comparison with GO/HAP/CS-3 on MG63 osteoblast-like cells and higher cytotoxicity against cancer cells (A549). The synthesized composite was found to show enhanced proliferative, adhesive, and osteoinductive effects on the alkaline phosphatase activity of osteoblast-like cells. Our results suggested that the CDDP-loaded GO/HAP/CS-3 nanocomposite has an immense prospective as a bone tissue replacement in the bone-cancer-affected tissues.
SponsorFunding M.R. acknowledges major financial support from the Department of Science and Technology, Science and Engineering Research Board (ref YSS/2015/001532; New Delhi, India) and also acknowledges the DST-PURSE program for the purchase of SEM and FTIR and UPE programs for the purchase of TEM. Notes The authors declare no competing financial interest.
Languageen
PublisherAmerican Chemical Society
SubjectOxide/Chitosan/Hydroxyapatite
TitleCisplatin-Loaded Graphene Oxide/Chitosan/Hydroxyapatite Composite as a Promising Tool for Osteosarcoma-Affected Bone Regeneration
TypeArticle
Pagination14620 - 14633
Issue Number11
Volume Number3


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record