• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-efficient cooperative cognitive relaying schemes for cognitive radio networks

    Thumbnail
    Date
    2018
    Author
    El Shafie A.
    Khattab T.
    El-Keyi A.
    Metadata
    Show full item record
    Abstract
    We investigate a cognitive radio network in which a primary user (PU) may cooperate with a cognitive radio user (i.e., a secondary user (SU)) for transmissions of its data packets. The PU is assumed to be a buffered node operating in a time-slotted fashion where the time is partitioned into equal-length slots. We develop two schemes which involve cooperation between primary and secondary users. To satisfy certain quality of service (QoS) requirements, users share time slot duration and channel frequency bandwidth. Moreover, the SU may leverage the primary feedback message to further increase both its data rate and satisfy the PU QoS requirements. The proposed cooperative schemes are designed such that the SU data rate is maximized under the constraint that the PU average queueing delay is maintained less than the average queueing delay in case of non-cooperative PU. In addition, the proposed schemes guarantee the stability of the PU queue and maintain the average energy emitted by the SU below a certain value. The proposed schemes also provide more robust and potentially continuous service for SUs compared to the conventional practice in cognitive networks where SUs transmit in the spectrum holes and silence sessions of the PUs. We include primary source burstiness, sensing errors, and feedback decoding errors to the analysis of our proposed cooperative schemes. The optimization problems are solved offline and require a simple 2-dimensional grid-based search over the optimization variables. Numerical results show the beneficial gains of the cooperative schemes in terms of SU data rate and PU throughput, average PU queueing delay, and average PU energy savings.
    DOI/handle
    http://dx.doi.org/10.1016/j.phycom.2018.08.006
    http://hdl.handle.net/10576/13095
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video