• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feature-Based Cardiac Cycle Segmentation in Phonocardiogram Recordings

    Thumbnail
    التاريخ
    2018
    المؤلف
    Taipalmaa J.
    Zabihi M.
    Gabbouj M.
    Kiranyaz S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Phonocardiogram (PCG) conveys crucial information for cardiac health evaluation in ambulatory care and is an essential diagnostic test for heart assessment. Thus, identification and positioning of the first and second heart sound within PCG is a vital step in automatic heart sound analysis. This study proposes a solution for individual cardiac cycle segmentation of PCG recordings. It extracts a rich set of features that are used for the segmentation of each cardiac cycle in a PCG recording by localizing the PCG peaks, S1 and S2. To accomplish this objective, a rich set of 66 discriminative features are selected and extracted from each frame in a PCG recording and several classifiers are evaluated to find out the one that achieves the highest segmentation accuracy. Finally, a post-processing method is proposed to reduce the classification noise and hence improve the segmentation performance Contrary to the earlier methods proposed in the literature, this method is evaluated on one of the largest datasets available consisting of 48 877s PCG recordings. The proposed method has achieved F1-score of 93.45%, and Sensitivity and Specificity values of 94.23% and 98.16% respectively. Moreover, it has been tested on the Pascal benchmark dataset, and has achieved Sensitivity and Specificity values of 96.42% and 98.12%, respectively.
    DOI/handle
    http://dx.doi.org/10.22489/CinC.2018.222
    http://hdl.handle.net/10576/13177
    المجموعات
    • الهندسة الكهربائية [‎2821‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video