• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    OCR-based hardware implementation for qatari number plate on the Zynq SoC

    Thumbnail
    التاريخ
    2018
    المؤلف
    Farhat, Ali A. H.
    Al-Zawqari, Ali
    Hommos, Omar
    Al-Qahtani, Abdulhadi
    Bensaali, Faycal
    Amira, Abbes
    Zhai, Xiaojun
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Automatic Number Plate Recognition (ANPR) systems have become widely used for safety, security, and commercial purposes. A typical ANPR system is based on three essential stages: Number Plate Localization (NPL), Character Segmentation (CS), and Optical Character Recognition (OCR). Recently, ANPR systems started to use High Definition (HD) cameras to improve the recognition rate of the system. In this paper., a proposed OCR stage for a HD ANPR system is presented. The software implementation of the proposed algorithm was carried on as a proof of concept using MATLAB., followed by its hardware implementation using a heterogeneous System on Chip (SoC) platform. The selected platform is Xilinx Zynq-7000 All Programmable SoC that consists of an ARM processor and a Field Programmable Gate Array (FPGA). The stage was implemented using both processing units separately and it was found that the FPGA is capable of processing one character faster the ARM processor. The hardware implementation results show that the proposed FPGA based OCR stage recognize one character in 0.63 ms, with an accuracy of 99.5%. ? 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/IEEEGCC.2017.8448145
    http://hdl.handle.net/10576/13292
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video