• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental analysis of additively manufactured thin-walled heat-treated circular tubes with slits using AlSi10Mg alloy by quasi-static axial crushing test

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Mohamed A.S.
    Laban O.
    Tarlochan F.
    Al Khatib S.E.
    Matar M.S.
    Mahdi E.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, additively manufactured aluminum thin-walled tubes with different slit dimensions are proposed to improve energy absorption efficiency. A total of 18 samples, which varied in the number of slits, slit length, slit width, and slit ends, were tested under quasi-static axial compression at a rate of 20 mm/min. The deformation and failure modes, load-displacement curves, and a number of crashworthiness factors were investigated. The factors considered included, but were not limited to, the specific energy absorption, crushing force efficiency, and energy absorbed per stroke. The results indicated that all the considered physical parameters, except for the slit ends, had an influence on the crashworthiness of the structures. The initial peak load decreases significantly as the number, width, and length of the slits increase. The bulk of the tested tubes exhibited a crushing force efficiency greater than 0.8. Overall, the presence of slits with length 15 mm and width 5 mm resulted in lower and smoother crushing forces than the straight tubes and, therefore, greater crushing force efficiency, validating them as crashworthy structures.
    DOI/handle
    http://dx.doi.org/10.1016/j.tws.2019.02.022
    http://hdl.handle.net/10576/13508
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]
    • Transportation [‎90‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video