• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of biocrude oil production from self-settling and non-settling microalgae biomass produced in the Qatari desert environment

    Thumbnail
    View/Open
    Das2019_Article_ComparisonOfBiocrudeOilProduct.pdf (1.978Mb)
    Date
    2019
    Author
    Das P.
    Thaher M.I.
    Khan S.
    AbdulQuadir M.
    Chaudhary A.K.
    Alghasal G.
    Al-Jabri H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The present study investigated the growth, harvesting, biocrude conversion, and recycling of the HTL aqueous phase for one self-settling (i.e., Chlorocystis sp.) and another non-settling (i.e., Picochlorum sp.) marine microalgae. Both the strains were grown simultaneously in 2 identical 25,000-L raceway ponds in the Qatari desert. The cell size of Picochlorum sp. was small (2–3 µm), and its biomass was harvested using a centrifuge. Cells of Chlorocystis sp. (6–9 µm) formed flocs that settled spontaneously in a sedimentation chamber. Harvested biomass of these two strains was then converted to biocrude oil, using a 500-mL Parr reactor. The biocrude yield of Picochlorum sp. and Chlorocystis sp. was 39.6 ± 1.15% and 34.8 ± 1.65%, respectively. The energy content of the biocrude oil was 32.78 and 33.38 MJ/kg for Chlorocystis sp. and Picochlorum sp., respectively. Both the strains were capable of efficiently utilizing more than 95% nitrogen of the HTL aqueous phase. Although lower biocrude yield was obtained from Chlorocystis sp., compared to Picochlorum sp., harvesting of Chlorocystis sp. would require much lower energy compared to Picochlorum sp. Therefore, a self-settling microalgae (e.g., Chlorocystis sp.) could potentially be a better candidate, over non-settling microalgae, for producing biofuel feedstock.
    DOI/handle
    http://dx.doi.org/10.1007/s13762-019-02364-w
    http://hdl.handle.net/10576/13721
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video