• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ensemble Kalman Filters for State Estimation and Prediction of Two-Time Scale Nonlinear Systems with Application to Gas Turbine Engines

    Thumbnail
    Date
    2019
    Author
    Daroogheh N.
    Meskin N.
    Khorasani K.
    Metadata
    Show full item record
    Abstract
    In this brief, we propose and develop estimation, prediction, and health monitoring methodologies for nonlinear systems by modeling the damage and degradation mechanism dynamics as 'slow' states that are augmented with the system 'fast' states. This augmentation results in a two-time scale (TTS) nonlinear system that is utilized for the development of decoupled slow and fast health estimation and prediction modules within a health monitoring framework. Specifically, a TTS filtering approach based on ensemble Kalman filters is developed by taking advantage of the singular perturbation model reduction technique. Our proposed methodology is then applied to a gas turbine engine that is affected by degradation phenomenon due to the turbine erosion. Extensive comparative studies are conducted to validate and demonstrate the advantages and capabilities of our proposed methodology when compared to the well-known nonlinear particle filtering (PF) approach that is commonly utilized in the literature. - 1993-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TCST.2018.2870044
    http://hdl.handle.net/10576/13738
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video