• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A scrutiny of antibacterial activity of pure and iodine doped ZnO thin films synthesized by mSILAR method

    Thumbnail
    Date
    2019
    Author
    Thomas D.
    Abraham J.
    Sadasivuni K.K.
    Metadata
    Show full item record
    Abstract
    Iodine doped zinc oxide (I-ZnO) thin films were synthesized by microwave assisted successive ionic layer adsorption (mSILAR) method. The structural characteristics of pure ZnO and I-ZnO thin films were carried out by powder X-ray diffraction (PXRD) analysis. The potential toxicity of pure and I-ZnO films was examined against gram-positive species like Staphylococcus aureus, Streptococcus haemolyticus and Bacillus cereus as well as gram-negative species like Escherichia coli, Klebsiella pneumonia, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Proteus rettigiri and Vibrio cholera by employing disc diffusion method. All the samples exhibited antibacterial activity on the tested organisms. I-ZnO produced maximum activity against both gram-positive and gram-negative species compared with pure ZnO thin film. The gram-positive species were observed to be more resistant to pure and I-ZnO thin films than gram-negative species. The studies revealed an enhancement in antibacterial activity of the I-doped thin films as compared to pure ZnO thin films. - 2019 Author(s).
    DOI/handle
    http://dx.doi.org/10.1063/1.5130376
    http://hdl.handle.net/10576/13818
    Collections
    • Center for Advanced Materials Research [‎1522‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video