• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A low-cost test rig for impact experiments on a dummy head

    Thumbnail
    View/Open
    1-s2.0-S2468067219300380-main.pdf (3.227Mb)
    Date
    2019
    Author
    Alhaddad A.Y.
    Cabibihan J.-J.
    Hayek A.
    Bonarini A.
    Metadata
    Show full item record
    Abstract
    Anthropomorphic test dummies are commonly used to evaluate the potential harm to humans due to dangerous scenarios, such as that due to car accidents. Furthermore, they have been used in sports to evaluate the efficacy of protective gears in mitigating harm due to impacts. Recently, they have been considered in industrial and collaborative robotics to assess risks due interactions between a human and a robot. In this article, we describe the development of a low-cost dummy head impact rig. The motivation behind this project is to quantify the potential harm to a child's head due to impacts with a small robotic toy. Three severity indices can be estimated, namely, Head Acceleration Criterion (HIC), 3 ms criterion, and peak head acceleration. Furthermore, the artificial skin of the dummy head can be used to assess the potential for tissue injuries. 3D-printed parts were used to develop the head. A tri-axial accelerometer embedded inside the head was used to measure the changes in accelerations. The developed head was placed inside a dedicated experimental bench. A data acquisition card that is connected to a computer system was used to acquire the raw data and then store it. A script was used to postprocess the stored data for the three severity indices. A video camera recording in slow-motion was used to record the impacts. The calculation of the impact velocities was based on the analysis of the video recordings using an open-source software. The developed experimental setup was validated by producing comparable results to that of relevant previous studies. - 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.ohx.2019.e00068
    http://hdl.handle.net/10576/13943
    Collections
    • Mechanical & Industrial Engineering [‎1526‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video