• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of the model predictive control and the SVPWM techniques on five-phase inverter

    No Thumbnail [120x130]
    Date
    2019
    Author
    Hachi N.
    Kouzou A.
    Hafaifa A.
    Iqbal A.
    Metadata
    Show full item record
    Abstract
    The multi-phase inverters have attracted recently much attention among the researchers, practitioners and industries due to their many advantages compared to their conventional count parts of single and three-phase inverters, which have been used widely in almost the domestic, commercial and industrial application. The present paper presents an invitation on the application of the space vector pulse width modulation (SVPWM) control technique and the model predictive control (MPC) technique on a five-phase inverter powering a star connected five-phase load. Firstly, the principle of each control technique has been presented in details, then two simulation experiments have been performed on five-phase two-level inverter feeding a balanced star five-phase RL load using the SVPWM control technique and the MPC control technique separately, where a load change is considered in this two tests. The main aim from this study is to discover the main pros and cons of each control technique and their applicability in ensuring the control of five-phase inverter under different operation constraints or conditions. The obtained results for the both cases are presented and discussed based on the main key factors such as the harmonics content, the THD, the dynamic response to the load variation, the dynamic behaviours at transient situation and the computing requirement. It can be said that the present comparative study has allowed shedding the light on the main features and requirements of the applicability of the both control techniques with multi-phase inverters, which are depending on the requirement of the related application and the merits of each control technique.
    DOI/handle
    http://hdl.handle.net/10576/14013
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail