• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Heuristic Statistical Testing Based Approach for Encrypted Network Traffic Identification

    Thumbnail
    التاريخ
    2019
    المؤلف
    Niu W.
    Zhuo Z.
    Zhang X.
    Du X.
    Yang G.
    Guizani M.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In recent years, malware with strong concealment uses encrypted protocol to evade detection. Thus, encrypted traffic identification can help security analysts to be more effective in narrowing down those encrypted network traffic. Existing methods are protocol independent, such as statistical-based and machine-learning-based approaches. Statistical-based approaches, however, are confined to payload length and machine-learning-based approaches have a low recognition rate for encrypted traffic using undisclosed protocols. In this paper, we proposed a heuristic statistical testing (HST) approach that combines both statistics and machine learning and has been proved to alleviate their respective deficiencies. We manually selected four randomness tests to extract small payload features for machine learning to improve real-time performances. We also proposed a simple handshake skipping method called HST-R to increase the classification accuracy. We compared our approach with other identification approaches on a testing dataset consisting of traffic that uses two known, two undisclosed, and one custom cryptographic protocols. Experimental results showed that HST-R performs better than other traditional coding-based, entropy-based, and ML-based approaches. We also showed that our handshake skipping method could generalize better for unknown cryptographic protocols. Finally, we also conducted experimental comparisons among different classification algorithms. The results showed that C4.5, with our method, has the highest identification accuracy for secure sockets layer and secure shell traffic.
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2019.2894290
    http://hdl.handle.net/10576/14052
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video