• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Rational Synthesis of Porous Graphitic-like Carbon Nitride Nanotubes Codoped with Au and Pd as an Efficient Catalyst for Carbon Monoxide Oxidation

    Thumbnail
    Date
    2019
    Author
    Eid K.
    Sliem M.H.
    Al-Kandari H.
    Sharaf M.A.
    Abdullah A.M.
    Metadata
    Show full item record
    Abstract
    The precise fabrication of efficient catalysts for CO oxidation is of particular interest in a wide range of industrial and environmental applications. Herein, a scalable method is presented for the controlled synthesis of graphitic-like porous carbon nitride nanotubes (gC 3 N 4 NTs) codoped with Au and Pd (Au/Pd/gC 3 N 4 NTs) as efficient catalysts for carbon monoxide (CO) conversion. This includes the activation of melamine with nitric acid in the presence of ethylene glycol and metal precursors followed by consecutive polymerization and carbonization. This drives the formation of porous one-dimensional gC 3 N 4 NT with an outstanding surface area of (320.6 m 2 g -1 ) and an atomic-level distribution of Au and Pd. Intriguingly, the CO conversion efficiency of Au/Pd/gC 3 N 4 NTs was substantially greater than that for gC 3 N 4 NTs. The approach thus presented may provide new avenues for the utilization of gC 3 N 4 doped with multiple metal-based catalysts for CO conversion reactions which had been rarely reported before.
    DOI/handle
    http://dx.doi.org/10.1021/acs.langmuir.8b03588
    http://hdl.handle.net/10576/14234
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video