• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Endorsing domestic energy saving behavior using micro-moment classification

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Alsalemi A.
    Ramadan M.
    Bensaali F.
    Amira A.
    Sardianos C.
    Varlamis I.
    Dimitrakopoulos G.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the ever-growing rise of energy consumption and its devastating financial and environmental repercussions, it is of utmost significance to moderate energy usage with proper energy efficiency tools. This is particularly applicable to domestic energy end-users, where an accurate profile is a prerequisite for motivating energy saving behavior. This article presents an innovative method for accurately understanding domestic energy usage patterns through a classification system. It capitalizes on the emerging concept of micro-moments, short energy-related events, and builds a comprehensive profile of end-user's energy activities with unprecedented accuracy. Micro-moments are classified based on a set of criteria per the given appliance. Five classifiers with different parameter settings were trained and tested on 10-fold cross-validated simulated data, with ensemble bagged trees topping with an accuracy of 88.0%. We also observed that linear classifiers lack in accuracy due to their inability to capture the dataset's specific structure and patterns. Fused with the other components of our framework, the proposed classification system is a novel contribution to domestic energy profiling in an effort to step energy efficiency up to the next level. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2019.05.089
    http://hdl.handle.net/10576/14318
    Collections
    • Computer Science & Engineering [‎2428‎ items ]
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video