• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis of Aliphatic Acids from CO2 and Water at Efficiencies Close to the Photosynthesis Limit Using Mixed Copper and Iron Oxide Films

    Thumbnail
    Date
    2019
    Author
    Kang U.
    Yoon S.H.
    Han D.S.
    Park H.
    Metadata
    Show full item record
    Abstract
    The photocatalytic conversion of CO2 and water into value-added chemicals remains a great challenge. This study shows that uniformly mixed copper and iron oxide (CuO/CuFeO2; CFO) bulky heterojunction films are capable of converting CO2 and water into C1–C6 aliphatic acid anions and O2 at a solar-to-chemical energy conversion (STC) efficiency close to 3% under simulated sunlight in the absence of any sacrificial chemicals or electrical biases. When the CFO film is simply wired to a Pt foil, C1 (formate, with selectivity of 100%) and O2 are produced at a near-stoichiometric ratio at an STC efficiency of ∼5% via the Z-scheme charge transfer mechanism. The CFO films are durable over 1 week and recyclable over 5 weeks under continuous irradiation. The addition of chloride enhances formate production, with an STC efficiency of 10%, while inhibiting the deformation of CFOs. Density functional theory computations support the observed selectivity and durability.
    DOI/handle
    http://dx.doi.org/10.1021/acsenergylett.9b01281
    http://hdl.handle.net/10576/14322
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video