Global change effects on plant communities are magnified by time and the number of global change factors imposed
Author | Komatsu K.J. |
Author | Avolio M.L. |
Author | Lemoine N.P. |
Author | Isbell F. |
Author | Grman E. |
Author | Houseman G.R. |
Author | Koerner S.E. |
Author | Johnson D.S. |
Author | Wilcox K.R. |
Author | Alatalo J.M. |
Author | Anderson J.P. |
Author | Aerts R. |
Author | Baer S.G. |
Author | Baldwin A.H. |
Author | Bates J. |
Author | Beierkuhnlein C. |
Author | Belote R.T. |
Author | Blair J. |
Author | Bloor J.M. |
Author | Bohlen P.J. |
Author | Bork E.W. |
Author | Boughton E.H. |
Author | Bowman W.D. |
Author | Britton A.J. |
Author | Cahill J.F. |
Author | Jr. |
Author | Chaneton E. |
Author | Chiariello N.R. |
Author | Cheng J. |
Author | Collins S.L. |
Author | Cornelissen J.H.C. |
Author | Du G. |
Author | Eskelinen A. |
Author | Firn J. |
Author | Foster B. |
Author | Gough L. |
Author | Gross K. |
Author | Hallet L.M. |
Author | Han X. |
Author | Harmens H. |
Author | Hovenden M.J. |
Author | Jagerbrand A. |
Author | Jentsch A. |
Author | Kern C. |
Author | Klanderud K. |
Author | Knapp A.K. |
Author | Kreyling J. |
Author | Li W. |
Author | Luo Y. |
Author | McCulley R.L. |
Author | McLaren J.R. |
Author | Megonigal J.P. |
Author | Morgan J.W. |
Author | Onipchenko V. |
Author | Pennings S.C. |
Author | Prevéy J.S. |
Author | Price J.N. |
Author | Reich P.B. |
Author | Robinson C.H. |
Author | Russell F.L. |
Author | Sala O.E. |
Author | Seabloom E.W. |
Author | Smith M.D. |
Author | Soudzilovskaia N.A. |
Author | Souza L. |
Author | Suding K. |
Author | Suttle K.B. |
Author | Svejcar T. |
Author | Tilmand D. |
Author | Tognetti P. |
Author | Turkington R. |
Author | White S. |
Author | Xu Z. |
Author | Yahdjian L. |
Author | Yu Q. |
Author | Zhang P. |
Author | Zhang Y. |
Available date | 2020-04-23T14:21:32Z |
Publication Date | 2019 |
Publication Name | Proceedings of the National Academy of Sciences of the United States of America |
Resource | Scopus |
ISSN | 278424 |
Abstract | Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (?10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity.ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously. - 2019 National Academy of Sciences. All rights reserved. |
Sponsor | ACKNOWLEDGMENTS. This work was conducted as a part of a Long-Term Ecological Research (LTER) Synthesis Group funded by NSF Grants EF-0553768 and DEB#1545288 through the LTER Network Communications Office and the National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara. M.L.A. was supported by a fellowship from the Socio-Environmental Synthesis Center (SESYNC), which also provided computing support. SESYNC is funded by NSF Grant DBI-1052875. Funding for individual experiments included in this analysis can be found in SI Appendix, section 7. |
Language | en |
Publisher | National Academy of Sciences |
Subject | Community composition Global change experiments Herbaceous plants Species richness |
Type | Article |
Pagination | 17867-17873 |
Issue Number | 36 |
Volume Number | 116 |
Files in this item
This item appears in the following Collection(s)
-
Atmospheric Science Cluster [38 items ]
-
Biological & Environmental Sciences [920 items ]