• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploring the photoelectrocatalytic behavior of free-standing TiO2 nanotube arrays on transparent conductive oxide electrodes: Irradiation direction vs. alignment direction

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Jeong H.W.
    Park K.J.
    Park Y.
    Han D.S.
    Park H.
    Metadata
    Show full item record
    Abstract
    Although one-dimensional TiO2 nanotube arrays (TNA) grown on Ti substrates via electrochemical anodization are extensively studied in photoelectrochemistry, the photo(electro)catalytic activity of TNA detached from the Ti substrates remains unexplored. Herein, we synthesize TNA samples with various pore sizes (40–100 nm) and tube lengths (4–15 μm) via two-step electrochemical anodization, and transfer them to transparent conducting oxide (i.e. fluorine-doped tin oxide; FTO) substrates in normal (n) alignment (front plane outward) and reverse (r) alignment (backplane outward). The front and back planes of the as-fabricated TNA film are the same based on X-ray diffraction (anatase structure), X-ray photoelectron spectroscopy (Ti and O), and UV–vis transmittance data, though the tubes are open in the front and closed in the back. Regardless of the direction of irradiation (SE: FTO → TNA vs. EE: TNA → FTO), longer tubes generate a higher photocurrent (Iph) due to the large light absorption. However, for the same alignment of TNA (either n- or r-TNA), SE irradiation leads to a very large Iph (e.g., nSE > nEE), whereas n-TNA consistently generates a larger Iph than r-TNA for a given irradiation direction (i.e., n > r). The photocatalytic decomposition of phenol follows the same tendency (n > r); however, the Faraday efficiency (based on the photocharge) is higher with EE (nEE 28%, rEE 20%) than SE (rSE 11%, nSE 7%) irradiation. These photoelectrochemical and photocatalytic behaviors are explained in terms of charge carrier generation (FTO/TNA vs. TNA/solution), dissimilar charge carrier transfer pathways (e− transfer through tube framework vs. h+ transfer via radial direction), and charge injection at the tube (open vs. clogged tube mouth)/solution interface. The time-resolved photoluminescence (TRPL) emission and incident photon-to-current efficiency (IPCE) are also studied to gain insight into the charge transfer kinetics.
    DOI/handle
    http://dx.doi.org/10.1016/j.cattod.2018.12.014
    http://hdl.handle.net/10576/14368
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video