• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart neuropathy detection using machine intelligence: Filling the void between clinical practice and early diagnosis

    Thumbnail
    التاريخ
    2019
    المؤلف
    Salahuddin, Tooba
    Al-Maadeed, Sumaya Ali
    Petropoulos, Ioannis N.
    Malik, Rayaz A.
    Ilyas, Saadat Kamran
    Qidwai, Uvais
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    An important aspect of Smart healthcare involves the development of innovative non-intrusive procedures for early detection and diagnosis of specific illnesses. Essentially, diseases for which very complicated and invasive clinical and pathological tests are required could benefit from such innovations. Neuropathy or nerve loss is a characteristic of several commonly occurring long-term or terminal illnesses such as Diabetes, Multiple Sclerosis, Parkinson's disease, and Alzheimer. The detection of a degree of neuropathy is usually done through biopsy-type procedures in which tissue samples are collected from the body for further tests and visualization. In this paper, an innovative approach is presented by using one of the neuronal-representative organ in the body, the eye, to detect nerve loss. Specifically, small nerves are affected in the eye as the disease progresses. While this is currently a clinical practice in neurology and ophthalmology, it is still highly subjective and depends upon the clinician's perspective and experiences. The presented technique in this paper, attempts to make this procedure highly objective through translating human knowledge of neuropathy grading into a data-centric classification system using the corneal images through Confocal microscope. Clinicians use this common, non-invasive procedure for detecting a variety of anomalies in the eye. However, using the nerve-level resolution of the microscope, the corneal nerve canvas can be visualized and accordingly segmented and classified for possible neuropathy grading, which in turn, give the insight into the disease progression. The technique used in this paper is Adaptive Neuro Fuzzy Inference System (ANFIS) that translates the human understanding of the underlying pathology into numerical decisions that can be utilized as a tool into predicting and early diagnosis of the disease. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WorldS4.2019.8904015
    http://hdl.handle.net/10576/14814
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video