• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart neuropathy detection using machine intelligence: Filling the void between clinical practice and early diagnosis

    Thumbnail
    Date
    2019
    Author
    Salahuddin, Tooba
    Al-Maadeed, Sumaya Ali
    Petropoulos, Ioannis N.
    Malik, Rayaz A.
    Ilyas, Saadat Kamran
    Qidwai, Uvais
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    An important aspect of Smart healthcare involves the development of innovative non-intrusive procedures for early detection and diagnosis of specific illnesses. Essentially, diseases for which very complicated and invasive clinical and pathological tests are required could benefit from such innovations. Neuropathy or nerve loss is a characteristic of several commonly occurring long-term or terminal illnesses such as Diabetes, Multiple Sclerosis, Parkinson's disease, and Alzheimer. The detection of a degree of neuropathy is usually done through biopsy-type procedures in which tissue samples are collected from the body for further tests and visualization. In this paper, an innovative approach is presented by using one of the neuronal-representative organ in the body, the eye, to detect nerve loss. Specifically, small nerves are affected in the eye as the disease progresses. While this is currently a clinical practice in neurology and ophthalmology, it is still highly subjective and depends upon the clinician's perspective and experiences. The presented technique in this paper, attempts to make this procedure highly objective through translating human knowledge of neuropathy grading into a data-centric classification system using the corneal images through Confocal microscope. Clinicians use this common, non-invasive procedure for detecting a variety of anomalies in the eye. However, using the nerve-level resolution of the microscope, the corneal nerve canvas can be visualized and accordingly segmented and classified for possible neuropathy grading, which in turn, give the insight into the disease progression. The technique used in this paper is Adaptive Neuro Fuzzy Inference System (ANFIS) that translates the human understanding of the underlying pathology into numerical decisions that can be utilized as a tool into predicting and early diagnosis of the disease. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WorldS4.2019.8904015
    http://hdl.handle.net/10576/14814
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video