• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Thabit, Mshael S.
    Hawari, Alaa H.
    Ammar, Mhd. Hafez
    Zaidi, Syed
    Zaragoza, Guillermo
    Altaee, Ali
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The present study evaluates the feasibility of applying forward osmosis (FO) process for the pretreatment of feed solution to a Multi Stage Flash (MSF) desalination plant. For the first time, real brine reject and real seawater were used as the draw solution and the feed solution, respectively in the FO process. The FO pretreatment is expected to dilute the brine reject and reduce the concentration of divalent ions, which are responsible for scale formation on the surface of heat exchanger in the MSF evaporator unit. The FO experiments were performed at different draw solution temperatures ranging between 25 and 40 °C, different draw and feed solutions flowrates and different membrane orientations. A maximum average membrane flux of 22.3 L/m2·h was reported at a draw solution temperature of 40 °C and 0.8 and 2.0 LPM flow rate of draw and feed solutions, respectively. The experimental results also revealed the process sensitivity to the feed solution temperature. It was found that the average membrane flux in the FO process operating at 0.8 and 2 LPM draw and feed solution flow rates, respectively was 16.9 L/m2·h at 25 °C brine temperature but increased to 22.3 L/m2·h at 40 °C brine temperature. These membrane fluxes resulted in 3% and 8.5% dilution of the draw solution at 25 °C and 40 °C temperatures, respectively. The average membrane flux in the FO mode was equal to that in the PRO mode at low flow rates but it was lower than that in the PRO mode at high flow rates of the feed and draw solutions. The outcomes of the study are very promising with regard to membrane flux and dilution of draw solution.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2019.03.015
    http://hdl.handle.net/10576/14823
    Collections
    • Center for Advanced Materials Research [‎1505‎ items ]
    • Civil and Environmental Engineering [‎863‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video