• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time smart-digital stethoscope system for heart diseases monitoring

    Thumbnail
    عرض / فتح
    sensors-19-02781-v2..pdf (8.001Mb)
    التاريخ
    2019
    المؤلف
    Chowdhury, Muhammad E.H.
    Khandakar, Amith
    Alzoubi, Khawla
    Mansoor, Samar
    Tahir, Anas M.
    Ibne Reaz, Mamun Bin
    Al-Emadi, Nasser
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    One of the major causes of death all over the world is heart disease or cardiac dysfunction. These diseases could be identified easily with the variations in the sound produced due to the heart activity. These sophisticated auscultations need important clinical experience and concentrated listening skills. Therefore, there is an unmet need for a portable system for the early detection of cardiac illnesses. This paper proposes a prototype model of a smart digital-stethoscope system to monitor patient’s heart sounds and diagnose any abnormality in a real-time manner. This system consists of two subsystems that communicate wirelessly using Bluetooth low energy technology: A portable digital stethoscope subsystem, and a computer-based decision-making subsystem. The portable subsystem captures the heart sounds of the patient, filters and digitizes, and sends the captured heart sounds to a personal computer wirelessly to visualize the heart sounds and for further processing to make a decision if the heart sounds are normal or abnormal. Twenty-seven t-domain, f-domain, and Mel frequency cepstral coefficients (MFCC) features were used to train a public database to identify the best-performing algorithm for classifying abnormal and normal heart sound (HS). The hyper parameter optimization, along with and without a feature reduction method, was tested to improve accuracy. The cost-adjusted optimized ensemble algorithm can produce 97% and 88% accuracy of classifying abnormal and normal HS, respectively.
    DOI/handle
    http://dx.doi.org/10.3390/s19122781
    http://hdl.handle.net/10576/14859
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video