• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DDoS: DeepDefence and Machine Learning for identifying attacks

    Thumbnail
    عرض / فتح
    Akhilesh Bhati _OGS Approved Thesis.pdf (2.625Mb)
    التاريخ
    2020-06
    المؤلف
    Bhati, Akhilesh
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Distributed Denial of Service (DDoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through the network is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this work and developments have been made on proactive detection of attacks. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset published in year 2017,2018 and CICDDoS2019 and program has been developed in Matlab R17b, utilizing Wireshark for features extraction from the datasets. Network Intrusion attacks on critical oil and gas industrial installation become common nowadays, which in turn bring down the giant industrial sites to standstill and suffer financial impacts. This has made the production companies to started investing millions of dollars revenue to protect their critical infrastructure with such attacks with the active and passive solutions available. Our thesis constitutes a contribution to such domain, focusing mainly on security of industrial network, impersonation and attacking with DDoS.
    DOI/handle
    http://hdl.handle.net/10576/15162
    المجموعات
    • الحوسبة [‎111‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video