• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الصيدلة
  • أبحاث الصيدلة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الصيدلة
  • أبحاث الصيدلة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    BIGIR at CLEF 2019: Automatic verification of Arabic claims over the web

    Thumbnail
    التاريخ
    2019
    المؤلف
    Haouari, Fatima
    Ali, Zien Sheikh
    Elsayed, Tamer
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the proliferation of fake news and its prevalent impact on democracy, journalism, and public opinions, manual fact-checkers become unscalable to the volume and speed of fake news propagation. Automatic fact-checkers are therefore needed to prevent the negative impact of fake news in a fast and effective way. In this paper, we present our participation in Task 2 of CLEF-2019 CheckThat! Lab, which addresses the problem of finding evidence over the Web for verifying Arabic claims. We participated in all of the four subtasks and adopted a machine learning approach in each with different set of features that are extracted from both the claim and the corresponding retrieved Web search result pages. Our models, trained solely over the provided training data, for the different subtasks exhibited relatively-good performance. Our official results, on the testing data, show that our best performing runs achieved the best overall performance in subtasks A and B among 7 and 8 participating runs respectively. As for subtasks C and D, our best performing runs achieved the median overall performance among 6 and 9 participating runs respectively.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070499562&partnerID=40&md5=7fc1782c96663db4f7f775bf38ac1478
    DOI/handle
    http://hdl.handle.net/10576/15182
    المجموعات
    • أبحاث الصيدلة [‎1426‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video