• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الهندسة
  • الحوسبة
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Diabetic Reinopathy Classification using Deep Learning

    Thumbnail
    عرض / فتح
    Sarah Obaid Sheikh _OGS Approved Thesis.pdf (1.178Mb)
    التاريخ
    2020-06
    المؤلف
    Sheikh, Sarah Obaid
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With diabetes growing at an alarming rate, changes in the retina of diabetic patients causes a condition called diabetic retinopathy which eventually leads to blindness. Early detection of diabetic retinopathy is the best way to provide good timely treatment and thus prevent blindness. Many developed countries have put forward well-structured screening programs which screens every person diagnosed with diabetes at regular intervals. However, the cost of running these programs is increasing with ever increasing disease burden. These screening programs require well trained opticians or ophthalmologist which are expensive especially in developing countries. A global shortage of health care professionals is putting a pressing need to develop fast and efficient screening methods. Using artificial intelligent screening tools will help process and generate a plan for the patients thus skipping the health care provider needed to just classify the disease and will lower the burden on health care professional’s shortage significantly. A plethora of research exists to classify severity of diabetic retinopathy using traditional and end to end methods. In this thesis, we first trained and compared the performance of lightweight architecture MobileNetV2 with other classifiers like DenseNet121 and VGG16 using the Retinal fundus APTOS 2019 Kaggle dataset. We experimented with different image reprocessing techniques and employed various hyperparameter tuning techniques, and found the lightweight architecture MobileNetV2 to give better results in terms of AUC score which defines the ability of the classifier to separate between the classes. We then trained MobileNetV2 using handpicked custom dataset which was an amalgamation of 3 different publicly available datasets viz. the EyePacs Kaggle dataset, the APTOS 2019 Blindness detection dataset and the Messidor2 dataset. We enhanced the retinal features using bio-inspired retinal filters and tuned the hyper-parameters to achieve an accuracy of 91.68% and AUC score of 0.9 when tested on unseen data. The macro precision, recall, and f1-scores are 77.6%, 83.1%, and 80.1% respectively. Our results demonstrate that our computational efficient light weight model achieves promising results and can be deployed as a mobile application for clinical testing.
    DOI/handle
    http://hdl.handle.net/10576/15230
    المجموعات
    • الحوسبة [‎103‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video