• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Expression of TBC1 Domain Family, Member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane

    Thumbnail
    View/Open
    2020- conference paper Endocrine socisety bvaa046.554.pdf (91.08Kb)
    Date
    2020-05-08
    Author
    Rizk, Nasser M
    ElGamal, Abdelrahman
    Elsayegh, Dina
    Cakir, Isin
    Ghamari-Langroudi, Masoud
    Metadata
    Show full item record
    Abstract
    The Expression of TBC1 Domain Family, member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane. Background: Obesity is commonly accompanied by impaired glucose homeostasis. Decreased glucose transport to the peripheral tissues, mainly skeletal muscle, leads to reduced total glucose disposal and hyperglycemia. TBC1D4 gene is involved in the trafficking of GLUT4 to the outer cell membrane in skeletal muscle. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound acting by reducing blood glucose levels through mechanisms not fully understood (1). The aim of this study is to investigate the effects SFN on TBC1D4 and GLUT4 gene expression in skeletal muscles of DIO mice, in order to elucidate the mechanism(s) through which SFN improves glucose homeostasis. Methodology: C57BL/6 mice (n=20) were fed with a high fat diet (60%) for 16 weeks to generate diet induced obese (DIO) mice with body weights between 45–50 gm. Thereafter, DIO mice received either SFN (5mg/kg BW) (n=10) or vehicle (n=10) as controls daily by intraperitoneal injections for four weeks. Glucose tolerance test (1g/kg BW, IP) and insulin sensitivity test (ITT) were conducted (1 IU insulin/ g BW, IP route) at the beginning and end of the third week of the injection. At the end of 4 weeks of the injection, samples of blood and skeletal muscles of both hindlimbs were collected. The expression levels of GLUT4 and TBC1D4 genes were analyzed by qRT-PCR. Blood was also used for glucose, adiponectin and insulin measurements. Results: SFN-treated DIO mice had significantly lower non-fasting blood glucose levels than vehicle-treated mice (194.16 ± 14.12 vs. 147.44 ± 20.31 mg/dL, vehicle vs. SFN, p value=0.0003). Furthermore, GTT results indicate that the blood glucose levels at 120 minutes after glucose infusion in was (199.83±34.53 mg/dl vs. 138.55±221.78 mg/dl) for vehicle vs. SFN with p=0.0011 respectively. ITT showed that SFN treatment did not enhance insulin sensitivity in DIO mice. Additionally, SFN treatment did not significantly change the expression of TBC1D4, and GLUT4 genes in skeletal muscles compared to vehicle treatment (p values >0.05). Furthermore, SFN treatment did not significantly affect the systemic insulin (1.84±0.74 vs 1.54±0.55 ng/ml, p=0.436), or adiponectin (11.96 ±2.29 vs 14.4±3.33 ug/ml, p=0.551) levels in SFN vs. vehicle-treated DIO mice, respectively. Conclusion: SFN treatment improves glucose disposal in DIO mice, which is not linked to the gene expression of GLUT4 and TBC1D4 and its mechanism of glucose disposal in skeletal muscles. Furthermore, SFN treatment did not improve insulin level, and the insulin sensitizer hormone adiponectin as potential players for enhancing insulin sensitivity.
    DOI/handle
    http://dx.doi.org/10.1210/jendso/bvaa046.554
    http://hdl.handle.net/10576/15372
    Collections
    • Biomedical Sciences [‎462‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video