• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة المدنية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modelling of Asphalt's Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis

    Thumbnail
    عرض / فتح
    Modelling of Asphalt's Adhesive Behaviour Using Classification and Regression Tree (CART) Analysis.pdf (1.689Mb)
    التاريخ
    2019
    المؤلف
    Arifuzzaman, Md
    Gazder, Uneb
    Alam, Md Shah
    Sirin, Okan
    Al Mamun, Abdullah
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The modification by polymers and nanomaterials can significantly improve different properties of asphalt. However, during the service life, the oxidation affects the constituents of modified asphalt and subsequently results in deviation from the desired properties. One of the important properties affected due to oxidation is the adhesive properties of modified asphalt. In this study, the adhesive properties of asphalt modified with the polymers (styrene-butadiene-styrene and styrene-butadiene) and carbon nanotubes were investigated. Asphalt samples were aged in the laboratory by simulating the field conditions, and then adhesive properties were evaluated by different tips of atomic force microscopy (AFM) following the existing functional group in asphalt. Finally, a predictive modelling and machine learning technique called the classification and regression tree (CART) was used to predict the adhesive properties of modified asphalt subjected to oxidation. The parameters that affect the behaviour of asphalt have been used to predict the results using the CART. The results obtained from CART analysis were also compared with those from the regression model. It was observed that the CART analysis shows more explanatory relationships between different variables. The model can predict accurately the adhesive properties of modified asphalts considering the real field oxidation and chemistry of asphalt at a nanoscale.
    DOI/handle
    http://dx.doi.org/10.1155/2019/3183050
    http://hdl.handle.net/10576/15478
    المجموعات
    • الهندسة المدنية [‎881‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video