• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    To What Extent Can Hyperelastic Models Make Sense the Effect of Clay Surface Treatment on the Mechanical Properties of Elastomeric Nanocomposites?

    Thumbnail
    Date
    2017
    Author
    Paran, Seyed Mohammad Reza
    Saeb, Mohammad Reza
    Formela, Krzysztof
    Goodarzi, Vahabodin
    Vijayan, Poornima p.
    Puglia , Debora
    Khonakdar , Hossein Ali
    Thomas, Sabu
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The poor knowledge about nonlinear mechanical behavior of elastomer nanocomposites arises from the incomplete information on the interface. Application of hyperelastic models provides more insights into the nature and the situation of interaction between the elastomeric matrix and nanofillers. The current work seeks to address the effect of interphase strength on tensile properties of the elastomer nanocomposites under large deformations. Acrylonitrile butadiene rubber (NBR)/clay nanocomposite is selected for modeling on account of complexities associated with exfoliation/intercalation of clay platelets. In particular, it is aimed to specify to what extent hyperelastic models can capture the effect of clay surface functionalization on the mechanical behavior of nanocomposites. Attachment of silane functional groups to the clay surface is confirmed by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and thermogravimetric analyses. Different hyperelastic models are examined to detect the characteristic of NBR/clay nanocomposites. The powerfulness/weakness of the used models are featured by calculating the strain energy functions and material parameters, meanwhile, by comparing model outputs with experimental data of tensile tests. (Figure presented.).
    DOI/handle
    http://dx.doi.org/10.1002/mame.201700036
    http://hdl.handle.net/10576/15726
    Collections
    • Center for Advanced Materials Research [‎1505‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video