• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An efficient eco advanced oxidation process for phenol mineralization using a 2D/3D nanocomposite photocatalyst and visible light irradiations

    Thumbnail
    View/Open
    s41598-017-09826-6.pdf (2.291Mb)
    Date
    2017
    Author
    Al-Kandari, H.
    Abdullah, A. M.
    Ahmad, Yahia H.
    Al-Kandari, S.
    Alqaradawi, Siham Y.
    Mohamed, A.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Nanocomposites (CNTi) with different mass ratios of carbon nitride (C3N4) and TiO2 nanoparticles were prepared hydrothermally. Different characterization techniques were used including X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM) and Brunauer-Emmett-Teller (BET). UV-Vis DRS demonstrated that the CNTi nanocomposites exhibited absorption in the visible light range. A sun light-simulated photoexcitation source was used to study the kinetics of phenol degradation and its intermediates in presence of the as-prepared nanocomposite photocatalysts. These results were compared with studies when TiO2 nanoparticles were used in the presence and absence of H2O2 and/or O3. The photodegradation of phenol was evaluated spectrophotometrically and using the total organic carbon (TOC) measurements. It was observed that the photocatalytic activity of the CNTi nanocomposites was significantly higher than that of TiO2 nanoparticles. Additionally, spectrophotometry and TOC analyses confirmed that degraded phenol was completely mineralized to CO2 and H2O with the use of CNTi nanocomposites, which was not the case for TiO2 where several intermediates were formed. Furthermore, when H2O2 and O3 were simultaneously present, the 0.1% g-C3N4/TiO2 nanocomposite showed the highest phenol degradation rate and the degradation percentage was greater than 91.4% within 30 min. 1 2017 The Author(s).
    DOI/handle
    http://dx.doi.org/10.1038/s41598-017-09826-6
    http://hdl.handle.net/10576/15921
    Collections
    • Center for Advanced Materials Research [‎1570‎ items ]
    • Chemistry & Earth Sciences [‎614‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video