• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DNA sequencing via Z-shaped graphene nano ribbon field effect transistor decorated with nanoparticles using first-principle transport simulations

    Thumbnail
    View/Open
    Wasfi_2020_New_J._Phys._22_063004.pdf (2.236Mb)
    Date
    2020-06-01
    Author
    Wasfi, Asma
    Awwad, Falah
    Awwad, Falah
    Ayesh, Ahmad I.
    Metadata
    Show full item record
    Abstract
    © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. DNA detection has revolutionized medical and biological research fields. It provides a wealth of medical information for each individual, which can be used in a personalized medicinal procedure in the future. Genome sequence helps to enhance our perception of inheritance, disease, and individuality. This work aims to improve DNA sequencing accuracy and the overall current signal using a novel nano pore based sensor that is developed to detect and identify the DNA bases. Herein, a novel z-shaped field effect transistor with a nano pore for the aim of DNA detection is studied, where a gate terminal is added below the center of the z-shaped graphene nano ribbon. First-principle transport calculations are used to identify the DNA bases and electronic signature. An efficient density functional theory approach combined with non-equilibrium Green's function formalism (DFT + NEGF) are utilized to detect the transmission spectrum and current for DNA nucleo bases: Adenine, Thymine, Guanine, and Cytosine. Using transmission current, a distinctive electronic signature is generated for each DNA base to detect each DNA sequence. Various orientations and lateral position for each DNA base are considered. Moreover, the effect of decorating the developed DNA sensor with gold and silver nanoparticles on the sensor's electrical current and transmission spectra is studied and analyzed. The results suggest that the z-shaped sensor could achieve DNA sequencing with high accuracy. The practical implementation of this work represents the capability to anticipate and cure diseases from the genetic makeup perspective.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087201713&origin=inward
    DOI/handle
    http://dx.doi.org/10.1088/1367-2630/ab87ef
    http://hdl.handle.net/10576/16243
    Collections
    • Center for Sustainable Development Research [‎340‎ items ]
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video