• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Bayesian Approach for LPV Model Identification and Its Application to Complex Processes

    Thumbnail
    Date
    2017
    Author
    Golabi, Arash
    Meskin, Nader
    Toth, Roland
    Mohammadpour, Javad
    Metadata
    Show full item record
    Abstract
    Obtaining mathematical models that can accurately describe nonlinear dynamics of complex processes and be further used for model-based control design is a challenging task. In this brief, a Bayesian approach is introduced for data-driven identification of linear parameter-varying regression models in an input-output dynamic representation form with an autoregressive with exogenous variable (ARX) noise structure. The applicability of the proposed approach is then investigated for the modeling of complex nonlinear process systems. In this approach, the dependence structure of the model on the scheduling variables is identified based on a Gaussian process (GP) formulation. The GP is used as a prior distribution to describe the possible realization of the scheduling-dependent coefficient functions of the estimated model. Then, a posterior distribution of these functions is obtained given the measured data and the mean value of this distribution is used to determine the estimated model. The properties and performance of the proposed method are evaluated using an illustrative example of a chemical process, namely, a distillation column, as well as an experimental case study with a three tank system. 1 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TCST.2016.2642159
    http://hdl.handle.net/10576/16287
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video