Show simple item record

AuthorShakoor, R. A.
AuthorWaware, Umesh S.
AuthorKahraman, Ramazan
AuthorPopelka, Anton
AuthorYusuf, Moinuddin M.
Available date2020-10-01T11:39:52Z
Publication Date2017
Publication NameInternational Journal of Electrochemical Science
ResourceScopus
URIhttp://dx.doi.org/10.20964/2017.05.56
URIhttp://hdl.handle.net/10576/16342
AbstractThe need for coatings with improved operation is vital to insure safety and high output of industrial plants. Electrodeposition is a valuable surface modification technology that can be used to develop various kinds of coatings. Although, Ni-B coatings have good mechanical properties (hardness and wear) but are suffering from inferior corrosion resistance. The development of Ni-B composite coatings by incorporating insoluble hard particles such as metal oxides (Al2O3, TiO2 ) through electrodeposition process has generated a great interest among the research community because of auspicious improvement in properties. The main purpose of this research work was to study the influence of addition of SiO2 particles on corrosion performance of Ni-B coated surfaces which has not been reported so far. Coatings of Ni-B and Ni-B-SiO2 were deposited on steel through electrodeposition process. The microstructural (SEM) analysis confirms the formation of uniform, dense nodular structure in coatings of Ni-B and Ni-B-SiO2 . Surface examination (AFM) discloses that the addition of SiO2 increases surface smoothness. Electrochemical characterization of the synthesized coatings indicates that Ni-B-SiO2 composite coatings demonstrate better anticorrosion properties when compared to Ni-B. Enhanced corrosion performance may be ascribed to reduction in the active surface area and grain size refinement which reduces the porosity by the addition of inactive SiO2 particles.
Languageen
PublisherElectrochemical Science Group
SubjectCoating
Composite
Corrosion
Crystal structure
Electrodeposition
TitleCorrosion behavior of electrodeposited Ni-B coatings modified with SiO2 particles
TypeArticle
Pagination4384-4391
Issue Number5
Volume Number12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record