• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach

    Thumbnail
    Date
    2020-10-01
    Author
    S, Udhaya Kumar
    R, Bithia
    D, Thirumal Kumar
    Doss, C George Priya
    Zayed, Hatem
    Metadata
    Show full item record
    Abstract
    K-Ras is a small GTPase and acts as a molecular switch by recruiting GEFs and GAPs, and alternates between the inert GDP-bound and the dynamic GTP-bound forms. The amino acid at position 12 of K-Ras is a hot spot for oncogenic mutations (G12A, G12C, G12D, G12R, G12S, and G12V), disturbing the active fold of the protein, leading to cancer development. This study aimed to investigate the potential conformational changes induced by these oncogenic mutations at the 12 position, impairing GAP-mediated GTP hydrolysis. Comprehensive computational tools (iStable, FoldX, SNPeffect, DynaMut, and CUPSAT) were used to evaluate the effect of these six mutations on the stability of wild type K-Ras protein. The docking of GTP with K-Ras was carried out using AutoDock4.2, followed by molecular dynamics simulations. Furthermore, on comparison of binding energies between the wild type K-Ras and the six mutants, we have demonstrated that the G12A and G12V mutants exhibited the strongest binding efficiency compared to the other four mutants. Trajectory analyses of these mutations revealed that G12A encountered the least deviation, fluctuation, intermolecular H-bonds, and compactness compared to the wildtype, which was supported by the lower Gibbs free energy value. Our study investigates the molecular dynamics simulations of the mutant K-Ras forms at the 12 position, which expects to provide insights about the molecular mechanisms involved in cancer development, and may serve as a platform for targeted therapies against cancer. Communicated by Ramaswamy H. Sarma.
    DOI/handle
    http://dx.doi.org/10.1080/07391102.2020.1830177
    http://hdl.handle.net/10576/16824
    Collections
    • Biomedical Sciences [‎796‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video