• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving DOA Estimation Algorithms Using High-Resolution Quadratic Time-Frequency Distributions

    Thumbnail
    Date
    2017
    Author
    Ouelha, Samir
    Aissa-El-Bey, Abdeldjalil
    Boashash, B.
    Metadata
    Show full item record
    Abstract
    This paper addresses the problem of direction of arrival (DOA) estimation and blind source separation (BSS) for nonstationary signals in the underdetermined case. These two problems are strongly related to the mixing matrix estimation problem. To deal with the nonstationary characteristics of signals, this study uses high-resolution quadratic time-frequency distributions (TFDs) to reduce cross-terms while keeping a good resolution for the construction of spatial TFDs. The main contributions of this paper are two-fold. First, the formulation of a statistical test for the noise thresholding step improves robustness and avoids the use of empirical parameters; this test performs multisource selection of the time-frequency points where the signal of interest is present. Second, an algorithm based on image processing methods performs an auto-source selection for mixing matrix estimation. The results on simulated signals demonstrate an improvement of 10 dB in terms of normalized mean square error for BSS and 7% in terms of relative error for DOA estimation over standard methods. 1 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TSP.2017.2718974
    http://hdl.handle.net/10576/16867
    Collections
    • Electrical Engineering [‎2849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video