• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Learning graph affinities for spectral graph-based salient object detection

    Thumbnail
    التاريخ
    2017
    المؤلف
    Aytekin, Caglar Caglar
    Iosifidis, Alexandros
    Kiranyaz, Serkan
    Gabbouj, Moncef
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, we propose a novel method for learning graph affinities for salient object detection. First, we assume that a graph representation of an image is given with a predetermined connectivity rule and representative features for each of its nodes. Then, we learn to predict affinities related to this graph, that ensures a decent salient object detection performance, when used with a spectral graph based foreground detection method. To accomplish this task, we modify convolutional kernel networks (CKNs) for graph affinity calculation, which were originally proposed to predict similarities between images. Subsequently, we employ a spectral graph based salient object detection method - Extended Quantum Cuts (EQCut) - using these graph affinities. We show that the salient object detection error of such a system is differentiable with respect to the parameters of the CKN. Therefore, the proposed system can be trained end-to-end by applying error backpropagation and CKN parameters can be learned for salient object detection task. The comparative evaluations over a large set of benchmark datasets indicate that the proposed method has an insignificant computational burden on, but significantly outperforms the baseline EQCut- which uses color affinities - and achieves a comparable performance level with the state-of-the-art in some performance measures.
    DOI/handle
    http://dx.doi.org/10.1016/j.patcog.2016.11.005
    http://hdl.handle.net/10576/16881
    المجموعات
    • الهندسة الكهربائية [‎2844‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video