• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكهربائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prognosis and Health Monitoring of Nonlinear Systems Using a Hybrid Scheme Through Integration of PFs and Neural Networks

    Thumbnail
    التاريخ
    2017
    المؤلف
    Daroogheh, Najmeh
    Baniamerian, Amir
    Meskin, Nader
    Khorasani, Khashayar
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, a novel hybrid architecture is proposed for developing a prognosis and health monitoring methodology for nonlinear systems through integration of model-based and computationally intelligent-based techniques. In our proposed framework, the well-known particle filters (PFs) method is utilized to estimate the states as well as the health parameters of the system. Simultaneously, the system observations are predicted through an observation forecasting scheme that is developed based on neural networks (NNs) paradigms. The objective is to construct observation profiles that are to be used in future time horizons. Our proposed online training that is utilized for observation forecasting enables the NNs models to track nonergodic changes in the profiles that are present due to presence of hidden damage affecting the system health parameters. The forecasted observations are then utilized in the PFs to predict the evolution of the system states as well as the health parameters (which are considered to be time-varying due to effects of degradation and damage) into future time horizons. Our proposed hybrid architecture enables one to select health signatures for determining the remaining useful life of the system or its components not only based on the system observations but also by taking into account the system health parameters that are not physically measurable. Our proposed hybrid health monitoring methodology is constructed and developed by invoking a special framework where implementation of the observation forecasting scheme is not dependent on the structure of the utilized NNs model. In other words, changing the network structure will not significantly affect the prediction accuracy associated with the entire health prediction scheme. To verify and validate the above results and as a case study, our proposed hybrid approach is applied to predict the health condition of a gas turbine engine when it is affected by and subjected to fouling and erosion degradation and fault damages.
    DOI/handle
    http://dx.doi.org/10.1109/TSMC.2016.2597272
    http://hdl.handle.net/10576/17390
    المجموعات
    • الهندسة الكهربائية [‎2850‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video